335 research outputs found

    MRI of the lung (2/3). Why … when … how?

    Get PDF
    Background Among the modalities for lung imaging, proton magnetic resonance imaging (MRI) has been the latest to be introduced into clinical practice. Its value to replace X-ray and computed tomography (CT) when radiation exposure or iodinated contrast material is contra-indicated is well acknowledged: i.e. for paediatric patients and pregnant women or for scientific use. One of the reasons why MRI of the lung is still rarely used, except in a few centres, is the lack of consistent protocols customised to clinical needs. Methods This article makes non-vendor-specific protocol suggestions for general use with state-of-the-art MRI scanners, based on the available literature and a consensus discussion within a panel of experts experienced in lung MRI. Results Various sequences have been successfully tested within scientific or clinical environments. MRI of the lung with appropriate combinations of these sequences comprises morphological and functional imaging aspects in a single examination. It serves in difficult clinical problems encountered in daily routine, such as assessment of the mediastinum and chest wall, and even might challenge molecular imaging techniques in the near future. Conclusion This article helps new users to implement appropriate protocols on their own MRI platforms. Main Messages • MRI of the lung can be readily performed on state-of-the-art 1.5-T MRI scanners. • Protocol suggestions based on the available literature facilitate its use for routine • MRI offers solutions for complicated thoracic masses with atelectasis and chest wall invasion. • MRI is an option for paediatrics and science when CT is contra-indicate

    MRI of the lung (3/3)-current applications and future perspectives

    Get PDF
    BACKGROUND: MRI of the lung is recommended in a number of clinical indications. Having a non-radiation alternative is particularly attractive in children and young subjects, or pregnant women. METHODS: Provided there is sufficient expertise, magnetic resonance imaging (MRI) may be considered as the preferential modality in specific clinical conditions such as cystic fibrosis and acute pulmonary embolism, since additional functional information on respiratory mechanics and regional lung perfusion is provided. In other cases, such as tumours and pneumonia in children, lung MRI may be considered an alternative or adjunct to other modalities with at least similar diagnostic value. RESULTS: In interstitial lung disease, the clinical utility of MRI remains to be proven, but it could provide additional information that will be beneficial in research, or at some stage in clinical practice. Customised protocols for chest imaging combine fast breath-hold acquisitions from a "buffet" of sequences. Having introduced details of imaging protocols in previous articles, the aim of this manuscript is to discuss the advantages and limitations of lung MRI in current clinical practice. CONCLUSION: New developments and future perspectives such as motion-compensated imaging with self-navigated sequences or fast Fourier decomposition MRI for non-contrast enhanced ventilation- and perfusion-weighted imaging of the lung are discussed. Main Messages • MRI evolves as a third lung imaging modality, combining morphological and functional information. • It may be considered first choice in cystic fibrosis and pulmonary embolism of young and pregnant patients. • In other cases (tumours, pneumonia in children), it is an alternative or adjunct to X-ray and CT. • In interstitial lung disease, it serves for research, but the clinical value remains to be proven. • New users are advised to make themselves familiar with the particular advantages and limitations

    Management of COPD:Is there a role for quantitative imaging?

    Get PDF
    While the recent development of quantitative imaging methods have led to their increased use in the diagnosis and management of many chronic diseases, medical imaging still plays a limited role in the management of chronic obstructive pulmonary disease (COPD). In this review we highlight three pulmonary imaging modalities: computed tomography (CT), magnetic resonance imaging (MRI) and optical coherence tomography (OCT) imaging and the COPD biomarkers that may be helpful for managing COPD patients. We discussed the current role imaging plays in COPD management as well as the potential role quantitative imaging will play by identifying imaging phenotypes to enable more effective COPD management and improved outcomes

    Rolle der MRT zur Detektion und Abklärung pulmonaler Rundherde

    Get PDF
    Zusammenfassung: Hintergrund: Mit den technischen Weiterentwicklungen in den vergangenen Jahren hat sich die MRT zu einem methodisch ausgereiften und für spezifische pulmonale Fragestellungen bereits auch klinisch bewährten Untersuchungsverfahren entwickelt. Ohne Strahlenexposition kombiniert sie morphologische und funktionelle Diagnostik und ergänzt das Spektrum der etablierten Verfahren für die bildgebende Diagnostik der Lunge. Ziel der Arbeit und Methoden: Diese Arbeit gibt einen Überblick über die aktuell verwendeten Sequenzen und Techniken zur Darstellung pulmonaler Rundherde und analysiert deren klinischen Stellenwert anhand der aktuellen Studienlage. In Zentrum stehen dabei die Detektion pulmonaler Metastasen, die Detektion primär pulmonaler Malignome bei Personen mit Risikoprofil und die Abklärung pulmonaler Rundherde hinsichtlich ihrer Dignität. Ergebnisse und Diskussion: Die MRT besitzt im Vergleich zum Referenzstandard Niedrigdosis-CT eine Sensitivität von ca. 80 % für die Detektion maligner pulmonaler Rundherde und ist der CT damit etwas unterlegen. Vorteile der MRT gegenüber der Niedrigdosis-CT sind andererseits die höhere Spezifität bei der Differenzierung maligner und benigner pulmonaler Rundherde sowie die fehlende Strahlenexposition. Außerhalb von Studien kann ein breiter Einsatz der MRT als Screeningverfahren zur Detektion und Abklärung pulmonaler Rundherde aufgrund der noch ungenügenden Datenlage derzeit noch nicht empfohlen werden. Das diagnostische Potenzial der MRT für die Früherkennung und das Staging pulmonaler Malignome rechtfertigt aber die weitere Evaluation der MRT als sekundäre Modalität im Rahmen von Studien

    Functional Lung MRI in Chronic Obstructive Pulmonary Disease: Comparison of T1 Mapping, Oxygen-Enhanced T1 Mapping and Dynamic Contrast Enhanced Perfusion

    Get PDF
    Purpose Monitoring of regional lung function in interventional COPD trials requires alternative end-points beyond global parameters such as FEV1. T1 relaxation times of the lung might allow to draw conclusions on tissue composition, blood volume and oxygen fraction. The aim of this study was to evaluate the potential value of lung Magnetic resonance imaging (MRI) with native and oxygen-enhanced T1 mapping for the assessment of COPD patients in comparison with contrast enhanced perfusion MRI. Materials and Methods 20 COPD patients (GOLD I-IV) underwent a coronal 2-dimensional inversion recovery snapshot flash sequence (8 slices/lung) at room air and during inhalation of pure oxygen, as well as dynamic contrast-enhanced first-pass perfusion imaging. Regional distribution of T1 at room air (T1), oxygen-induced T1 shortening (Delta T1) and peak enhancement were rated by 2 chest radiologists in consensus using a semi-quantitative 3-point scale in a zone-based approach. Results Abnormal T1 and Delta T1 were highly prevalent in the patient cohort. T1 and Delta T1 correlated positively with perfusion abnormalities (r = 0.81 and r = 0.80;p&0.001), and with each other (r = 0.80;p< 0.001). In GOLD stages I and II Delta T1 was normal in 16/29 lung zones with mildly abnormal perfusion (15/16 with abnormal T1). The extent of T1 (r = 0.45;p< 0.05), T1 (r = 0.52;p< 0.05) and perfusion abnormalities (r = 0.52;p< 0.05) showed a moderate correlation with GOLD stage. Conclusion Native and oxygen-enhanced T1 mapping correlated with lung perfusion deficits and severity of COPD. Under the assumption that T1 at room air correlates with the regional pulmonary blood pool and that oxygen-enhanced T1 reflects lung ventilation, both techniques in combination are principally suitable to characterize ventilation-perfusion imbalance. This appears valuable for the assessment of regional lung characteristics in COPD trials without administration of i. v. contrast

    Morpho-Functional 1H-MRI of the Lung in COPD: Short-Term Test-Retest Reliability

    Get PDF
    Purpose Non-invasive end-points for interventional trials and tailored treatment regimes in chronic obstructive pulmonary disease (COPD) for monitoring regionally different manifestations of lung disease instead of global assessment of lung function with spirometry would be valuable. Proton nuclear magnetic resonance imaging (1H-MRI) allows for a radiation-free assessment of regional structure and function. The aim of this study was to evaluate the short-term reproducibility of a comprehensive morpho-functional lungMRI protocol in COPD. Materials and Methods 20 prospectively enrolled COPD patients (GOLD I-IV) underwent 1H-MRI of the lung at 1.5T on two consecutive days, including sequences for morphology, 4D contrast-enhanced perfusion, and respiratory mechanics. Image quality and COPD-related morphological and functional changes were evaluated in consensus by three chest radiologists using a dedicated MRI-based visual scoring system. Test-retest reliability was calculated per each individual lung lobe for the extent of large airway (bronchiectasis, wall thickening, mucus plugging) and small airway abnormalities (tree in bud, peripheral bronchiectasis, mucus plugging),consolidations, nodules, parenchymal defects and perfusion defects. The presence of tracheal narrowing, dystelectasis, pleural effusion, pulmonary trunk ectasia, right ventricular enlargement and, finally, motion patterns of diaphragma and chest wall were addressed. Results Median global scores [10(Q1:8.00;Q3:16.00) vs. 11(Q1:6.00;Q3:15.00)] as well as category subscores were similar between both timepoints, and kappa statistics indicated "almost perfect" global agreement (kappa = 0.86, 95% CI = 0.81-0.91). Most subscores showed at least "substantial" agreement of MRI1 and MRI2 (kappa = 0.64-1.00),whereas the agreement for the diagnosis of dystelectasis/effusion (kappa = 0.42, 95% CI = 0.00-0.93) was "moderate" and of tracheal abnormalities (kappa = 0.21, 95% CI = 0.00-0.75) "fair". Most MRI acquisitions showed at least diagnostic quality at MRI1 (276 of 278) and MRI2 (259 of 264). Conclusion Morpho-functional 1H-MRI can be obtained with reproducible image quality and high short-term test-retest reliability for COPD-related morphological and functional changes of the lung. This underlines its potential value for the monitoring of regional lung characteristics in COPD trials

    Inferring combinatorial association logic networks in multimodal genome-wide screens

    Get PDF
    Motivation: We propose an efficient method to infer combinatorial association logic networks from multiple genome-wide measurements from the same sample. We demonstrate our method on a genetical genomics dataset, in which we search for Boolean combinations of multiple genetic loci that associate with transcript levels

    COVID‑19 pneumonia imaging follow‑up: when and how? A proposition from ESTI and ESR

    Get PDF
    Abstract This document from the European Society of Thoracic Imaging (ESTI) and the European Society of Radiology (ESR) discusses the role of imaging in the long-term follow-up of COVID-19 patients, to define which patients may benefit from imaging, and what imaging modalities and protocols should be used. Insights into imaging features encountered on computed tomography (CT) scans and potential pitfalls are discussed and possible areas for future review and research are also included. Key Points • Post-COVID-19 pneumonia changes are mainly consistent with prior organizing pneumonia and are likely to disappear within 12 months of recovery from the acute infection in the majority of patients. • At present, with the longest series of follow-up examinations reported not exceeding 12 months, the development of persistent or progressive fibrosis in at least some individuals cannot yet be excluded. • Residual ground glass opacification may be associated with persisting bronchial dilatation and distortion, and might be termed “fibrotic-like changes” probably consistent with prior organizing pneumonia.publishedVersio

    NeuroD2 regulates the development of hippocampal mossy fiber synapses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The assembly of neural circuits requires the concerted action of both genetically determined and activity-dependent mechanisms. Calcium-regulated transcription may link these processes, but the influence of specific transcription factors on the differentiation of synapse-specific properties is poorly understood. Here we characterize the influence of NeuroD2, a calcium-dependent transcription factor, in regulating the structural and functional maturation of the hippocampal mossy fiber (MF) synapse.</p> <p>Results</p> <p>Using NeuroD2 null mice and <it>in vivo </it>lentivirus-mediated gene knockdown, we demonstrate a critical role for NeuroD2 in the formation of CA3 dendritic spines receiving MF inputs. We also use electrophysiological recordings from CA3 neurons while stimulating MF axons to show that NeuroD2 regulates the differentiation of functional properties at the MF synapse. Finally, we find that NeuroD2 regulates PSD95 expression in hippocampal neurons and that PSD95 loss of function <it>in vivo </it>reproduces CA3 neuron spine defects observed in NeuroD2 null mice.</p> <p>Conclusion</p> <p>These experiments identify NeuroD2 as a key transcription factor that regulates the structural and functional differentiation of MF synapses <it>in vivo</it>.</p

    Magnetic resonance imaging in children: common problems and possible solutions for lung and airways imaging

    Get PDF
    Pediatric chest MRI is challenging. High-resolution scans of the lungs and airways are compromised by long imaging times, low lung proton density and motion. Low signal is a problem of normal lung. Lung abnormalities commonly cause increased signal intenstities. Among the most important factors for a successful MRI is patient cooperation, so the long acquisition times make patient preparation crucial. Children usually have problems with long breath-holds and with the concept of quiet breathing. Young children are even more challenging because of higher cardiac and respiratory rates giving motion blurring. For these reasons, CT has often been preferred over MRI for chest pediatric imaging. Despite its drawbacks, MRI also has advantages over CT, which justifies its further development and clinical use. The most important advantage is the absence of ionizing radiation, which allows frequent scanning for short- and long-term follow-up studie
    corecore